1
] .

-

L

DEDAD Fi ved

ADT NNACLIMENTATION PAGE Form Approved]
Pubiic reg response, inciuding the ¥me for reviewing instructions. searching existing data sources ; and maintainng the deta

vt AD=A244 847 v ol d vemn ek b r wacog b b, g
= (N - TR ———

Final: 18 Dec 1990 to 01 Jun 1993

3. TITLE AND SUBTITLE
Alliant Computer Systems Corporation, Alliant FX/Ada Compiler, Version 2.3, Alliant
FX/80 (Host & Target), 901218W1.11106

6. AUTHOR(S}
Wright-Patterson AFB, Dayton, OH
USA

S. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ada Validation Facility, Language Control Facility ASD/SCEL
Bidg. 676, Rm 135

Wright-Patterson AFB, Dayton, OH 45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

AVF-VSR-443.1191

S, SPONSORING/MONITORING AGENCY NAM E(S) AND ADDRESS(ES)

Ada Joint Program Office

United States Department of Defense
Pentagon, Rm 3E114

Washington, D.C. 20301-3081

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11, SUPPLEMENTARY NOTES

T T T T TS T TS B~y TSy T
12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

> ——n1
13. ABSTRACT (Maximum 200 words)

Concentrix, Release 5.7, (Host & Target), ACVC 1.11.

Alliant Computer Systems Corporation, Alliant FX/Ada Compiler, Wright-Patterson, AFB, Version 2.3, Alliant FX/80 under

DTIC

ELECTE
JAN13 1992

B

4. SUBJECT TERMS
Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

77. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION
OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.
19, SECURITY CLASSIFICATION | W—__J LIMITATION OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

NSN 7540-01-280-550

Standard Form 298, (Rev. 2-89)
Proscribed by ANSI Sid. 239-128

AVF Control Number: AVF-VSR-443.1191
19 November 1991
90-10-18-ACS

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 901218wW1.11106
Alliant Computer Systems Corporation
Alliant FX/Ada Compiler, Version 2.3
Alliant FX/80 => Alliant FX/80

Prepared By:
Ada validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

920
Wit

92 & 19 039

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 18 December 1990.

Compiler Name and Version: Alliant FX/Ada Compiler, Version 2.3
Host Computer System: Alliant FX/80 under Concentrix, Release 5.7
Target Computer System: Alliant FX/80 under Concentrix, Release 5.7

Customer Agreement Number: 90-10-18-ACS

A more detailed description of this Ada implementation is found in section
3.1 of this report.

As a result of this validation effort, Validation Certiticate
901218W1.11106 is awarded to Alliant Computer Systems Corporation. This
certificate expires on 1 March 1993.

This report has been reviewed and is approved.

,efé:&ﬁw

Ada Validation Facility (§7

ion Organization
Computer & Software
Engineerfyng Division

Steven P. Wilson
Technical Director

ASD/SCEL Institute for Defense Analyses
Wright-Patterson AFB OH 45433-6503 Alexandria VA 22311
/"“\
, N
0
’/ »"}kﬁ'..- # .
/ﬁL Ada Joint Program Office o
Dr. John Solomond
Director
)4
Department of Defense Accession For G;;‘!
Washington DC 20301 NTIS GRA&I
DTIC TAB 0
Unannounced a

Justification— o ud

By
__g}spyibution[‘”_']

Availability Codgs
iAvail and/or
Dist Specisal

A’ \ .

DECLARATION OF CONFORMANCE

Compiler Implemertor: All:ant Computer Systems Corporation
Ada Validtaion Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability Version: 1.11

Base Coafiguration

Base Compiler Name: Alliant FX/Ada Compiler, Version 2.3
Host Architecture ISA: Alliant FX/80 OS&Ver#: Concentrix Release 5.7
Target Architecture ISA: Alliant FX/80 O3&Ver#: Concentrix Release 5.7

Implementor’s Declaration

I, the undersigned, representing Alliant, have implemented
no deliberate extensions to the Ada Llanguage Standard
ANSI/MIL-STD-1815A in the compilers listed in this declara-
tion. I declare that Alliant Coumputer Systems Corporation is
the owner of record of the Ada language compilers listed
above and, as such, is responsible for maintaining said com-
pilers in conformance to ANSI/MIL-STD-1815A. All certifi-
cates and registrations for Ada language compilers listed in
the declaration shall be made only in the ownexr'’s corporate
name,

M@A Date: . 7 |
AllTant Computer Systems Fo:poration

Andrew F. Halford

CHAPTER 1

Nl
. .
W

CHAPTER 2

SN S L]
o o o
WA =

CHAPTER

W

www
W N =

APPENDIX A
APPENDIX B

APPENDIX C

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT

REFERENCES + « « « . &
ACVC TEST CLASSES . e e
DEFINITION OF TERMS
IMPLEMENTATION DEPENDENCIES
VITHDRAWN TESTS

INAPPLICABLE TESTS .
TEST MODIFICATIONS .

PROCESSING INFORMATION
TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS
TEST EXECUTION .

MACRO PARAMETERS
COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [AdaB3] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[AdaB3] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and IS0 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

[UGB9} Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:

A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 3.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of

the customized

test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability
(ACVC)

Ada
Implementation

Ala Joint
Program
Office (AJPO)

Ada
Validation
Facility (AVF)

Ada
Validation
Organization
(AVO)

Compliance of
an Ada
Implementation

Computer
System

The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada implementations,
consisting of the test suite, the support programs, the ACVC
user’s guide and the template for the validation summary
report.

An Ada compiler with its host computer system and its
target computer system.

The part of the certification body which provides policy and
guidance for the Ada certification system.

The part of the certification body which carries out the
procedures required to establish the compliance of an Ada
implementation.

The part of the certification body that provides technical
guidance for operations of the Ada certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

Fulfillment by a product, process or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
wvhich validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and 1ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardwvare implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90}.

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 VITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
wvithdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 21 November 1990.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B B85001L C83026A C83041A C97116A C98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B BD1BO2B BD1BO6A AD1B0O8A BD2A02A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A BD4008BA CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C

ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE21198 CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. The inapplicability criteria for some
tests are expla_ned in documents issued by ISO and the AJPO known as Ada
Issues and commonly referenced in the format AI-dddd. For this
implementation, the following tests were inapplicable for the reasons
indicated; references to Ada Issues are included as appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests nave flosting-point type declarations requiring
more digits than SYSTEM.MAX DIG "S:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C357J8L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tosts)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONG_INTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C
CD7101F

C35702B, C35713C, B86001U, and C86006G check for the predefined type
LONG_FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT.

A35801E checks that FLOAT'FIRST..FLOAT’LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 47 or
greater.

C45624A checks that the proper exception is raised if MACHINE_OVERFLOWS
is FALSE for floating point types with digits 5. For this
implementation, MACHINE OVERFLOVS is TRUE.

C45624B checks that the proper exception is raised if MACHINE OVERFLOWS
is FALSE for floating point types with digits 6. For this
implementation, MACHINE OVERFLOWS is TRUE.

C86001F reccmpiles package SYSTEM, making package TEXT_IO, and hence
package REPORT, obsolete. For this implementation, the package TEXT_IO
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION’BASE that are outside the
range of DURATION. There are no such values for this implementation.

2-2

IMPLEMENTATION DEPENDENCIES

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2AB4E, CD2AB4I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

The tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode
and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN _FILE SEQUENTIAL IO
CE2102E CREATE OUT_FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT_IO
CE21021 CREATE IN FILE DIRECT_IO
CE2102J CREATE OUT_FILE DIRECT_IO
CE2102N OPEN IN_FILE SEQUENTIAL_IO
CE21020 RESET IN FILE SEQUENTIAL_IO
CE2102P OPEN OUT_FILE SEQUENTIAL_IO
CE2102Q RESET OUT_FILE SEQUENTIAL IO
CE2102R OPEN INOUT_FILE DIRECT_IO
CE21028 RESET INOUT_FILE DIRECT_IO
CE2102T OPEN IN FILE DIRECT_IO
CE2102U RESET IN_FILE DIRECT_IO
CE2102V OPEN OUT_FILE DIRECT_IO
CE2102V RESET OUT_FILE DIRECT_IO
CE3102E CREATE IN FILE TEXT_I0
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE =~ -—----——- TEXT_I0
CE31021 CREATE OUT_FILE TEXT_IO
CE3102J OPEN IN FILE TEXT_I0
CE3102K OPEN OUT_FILE TEXT IO

CE2203A checks that WRITE raises USE_ERROR if the capacity of the
external file is exceeded for SEQUENTIAL I0. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE_ERROR if the capacity of the
external file is exceeded for DIRECT_IO. This implementation does not
restrict file capacity.

CE3304A checks that USE ERROR is raised if a call to SET_LINE LENGTH or
SET_PAGE_LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT’LAST. For this implementation, the value of
COUNT' LAST is greater than 150000 making the checking of this objective
impractical.

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 14 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H BC1303F BC3005B BD2B03A BD2D0O3A
BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range FLOAT’FIRST..FLOAT’LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. LRM 3.5.7:12).

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Alliant Computer Systems Corporation
One Monarch Drive
Littleton MA 01460

For a point of contact for sales information about this Ada implementation
system, see:

Alliant Computer Systems Corporation
One Monarch Drive
Littleton MA 01460

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwvise, the Ada Implementation fails the ACVC [Pro90].

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3814
b) Total Number of Withdrawn Tests 83
c) Processed Inapplicable Tests 72
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 273

g) Total Number of Tests for ACVC 1.11 4170

All I/0 tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 273 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
revieved by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

-w suppress warnings

-M link the test into an executable image

3-2

PROCESSING INFORMATION

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
following macro parameters are defined in terms of the value V of

SMAX IN LEN which is the maximum input line length permitted for the tested
implementation. For these parameters, Ada string expressions are given
rather than the macro values themselves.

Macro Parameter Macro Value
$MAX_IN LEN 499
SBIG_ID1 (1..V-1 => A", V. => '1’)
SBIG_ID2 (1..V-1 => ’A’, V => 72')
$BIG_ID3 (1..V/72 => 'A') & '3’ &
(1..V-1-V/2 => 'A’)
SBIG_ID4 (1..V/2 => 'A') & '4" &
(1..V-1-V/2 => ’A")
SBIG_INT LIT (1..v-3 => '0’') & "298"
SBIG_REAL LIT (1..v-5 => '0’) & "690.0"
SBIG_STRING1 & (1..V/2 => 'AT) &'
SBIG_STRING2 & (1..V-1-V/2 => 'A') & 'Y & 'Y
SBLANKS (1..v-20 => ")

$MAX_LEN_INT_BASED LITERAL
"2:" & (1..V-5 => '0’) & "11:"

SMAX LEN_REAL BASED LITERAL
"16:" & (1..V-7 => ’0’) & "F.E:"

A-1

MACRO PARAMETERS

$MAX_STRING_LITERAL

The following table contains the values for the remaining macro parameters.

Macro Parameter

SACC_SIZE
SALIGNMENT
SCOUNT_LAST
$DEFAULT MEM_SIZE
SDEFAULT STOR_UNIT
SDEFAULT SYS_NAME
$DELTA_DOC
SENTRY_ADDRESS
SENTRY ADDRESS1
SENTRY ADDRESS2
SFIELD_LAST
SFILE_TERMINATOR
SFIXED_NAME
SFLOAT _NAME
'$FORM_STRING

SFORM_STRING2

e & (1..V-2 => 'A’) & Iz

Macro Value

2_147_483_647

16_777_216

8

FX_UNIX
0.0000000004656612873077392578125
SYSTEM. PHYSICAL_ADDRESS(16#40#)
SYSTEM. PHYSICAL_ADDRESS(16480#)
SYSTEM. PHYSICAL ADDRESS(16#100#)
2_147_483_647

’ o

NO_SUCH_TYPE

NO_SUCH_TYPE

"CANNOT RESTRICT_FILE_CAPACITY"

SGREATER_THAN_ DURATION

100_000.0

SGREATER THAN DURATION BASE LAST

10_005_000.0

SGREATER THAN FLOAT BASE_LAST

1.8E+308

SGREATER THAN FLOAT SAFE_LARGE

5.0E307

SGREATER_THAN SHORT_FLOAT_SAFE_LARGE

A-2

MACRO PARAMETERS

9.0E37
SHIGH PRIORITY 99

$ILLEGAL_EXTERNAL_FILE_NAMEI
/illegal/file_name/2}]%2102c.dat

SILLEGAL_EXTERNAL FILE NAME2
/illegal/file name/CE2102C.dat

SINAPPROPRIATE LINE LENGTH
-1

SINAPPROPRIATE PAGE LENGTH

-1
$INCLUDE PRAGMA1 PRAGMA INCLUDE ("A28006D1.TST")
$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006D1.TST")
$INTEGER_FIRST ~2_147 483 648
$INTEGER LAST 2_147_483_647

SINTEGER_LAST PLUS_ 1 2_147 483 648
SINTERFACE LANGUAGE C
SLESS THAN DURATION -100_000.0

SLESS_THAN DURATION BASE_FIRST
-10_000_000.0

$LINE_TERMINATOR ASCII.LF
$LOW_PRIORITY 0

SMACHINE CODE_STATEMENT
CODE_0’ (OP => NOP);

SMACHINE _CODE_TYPE CODE 0

$MANTISSA_DOC 31

$MAX_DIGITS 15

$MAX_INT 2_147_483_647

$MAX_INT PLUS 1 2_147_483 648
SMIN_INT -2_147_483_648
$NAME TINY INTEGER

A-3

MACRO PARAMETERS

$NAME_LIST
$NAME_SPECIFICATION1
$NAME_SPECIFICATION2
$NAME_SPECIFICATION3
$NEG_BASED_INT
$NEV_MEM_SIZE
$NEV_STOR UNIT
$NEV_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME
$TASK_SIZE
$TASK_STORAGE_SIZE
$TICK
$VARIABLE_ADDRESS
$VARIABLE ADDRESS1
$VARIABLE_ADDRESS2

$YOUR_PRAGMA

FX UNIX

/lang3/ada/acvel _11/c/e/X2120A
/lang3/ada/acvel_11/c/e/X2120B
/lang3/ada/acvel 11/c/e/X3119A
164#FFFFFFFD#

16_777_216

8

FX UNIX

ASCII.FF

RECORD SUBP : OPERAND; END RECORD;
CODE_0

32

10240

0.01

VAR 1'ADDRESS

VAR_2'ADDRESS

VAR 3’ADDRESS

RESOURCE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwvise, references in this appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, refereaces in this appendix are to linker documentation and not
to this report.

B-1

COMPILATION SYSTEM OPTIONS

NAME

ada - FX/Ada compiler
SYNOPSIS

ada [options] [ada_source.a ...] [1ld_options] [object_file.o]...
DESCRIPTION

Compiles the specified Ada source files into object files and
optionally (if -M is specified) links the object files into
an executable file. Object files from previous Ada
compilations are implicitly included as needed. Object files
from non-Ada compilations can be explicitly included by
specifying the names of the .o files.

Source files must reside in directories that are FX/ADS
libraries (see a.mklib); source file names must end in .a (a
period followed by the letter a in lowercase). Output object
files are placed in the invisible subdirectory .objects and
are not visible as .o files in the FX/ADS library. Separate
compilation information is placed in the invisible
subdirectory .nets.

If error processing (-e, -E, -el, -El, or -ev) is not
specified, the raw error messages are written to standard
error output. If you want to process the raw error messages
vith e.error, redirect standard error output to a file (D&
filename at the end of the command line).

OPTIONS

-a file name
(archive) Treats file name.a as an archive file rather
than an Ada source file.

-d (dependencies) Analyze the source file for dependencies
only. No syntax analysis occurs and no object files are
produced. Used by a.make to establish dependencies
among new files.

-e (error) WVrites error lines and diagnostics to standard
output. Only one of the -e or -E options should be used.

-E [file|directory]
(error) Writes error lines and diagnostics to standard
output and writes the raw error messages to the
specified file. The name of the file defaults to
ada_source.err; if a directory name is specified, the
output is placed in ada_source.err in that directory.
Only one of the -e or -E options should be used.

B-2

COMPILATION SYSTEM OPTIONS

-el (error listing) Writes a full listing with interspersed
diagnostics to standard output, if any errors occur.
Only one of the -el or -El options should be used.

-El [fileldirectory]

(error listing) Writes a full listing with interspersed
diagnostics to standard output and writes the raw error
messages to the specified file, if any errors occur.
The name of the file defaults to ada_source.err; if a
directory name is specified, the output is placed in
ada source.err in that directory. Only one of the -el
or -El options shculd be used.

-ev (error vi) Embeds the raw error messages in the source
file and calls vi on the source file.

-1x (link) Includes the library libx.a from /lib, /usr/lib,
or /usr/local/lib. This option is a link option and\
must not precede the name of a file that references the
library. See the Concentrix ld command.

-M unit name
(main) Produces an executable program using the named
program unit as the main program. The main program must
be either a parameterless procedure or a parameterless
function returning an integer.

-M ada_source.a
(main) Like -M unit_name, except that the unit name is
assumed to be the root name of the source file that
follows

-0 executable file
(output) Names the output executable file; by default,
the executable file is named a.out. The -M option must
also be specified.

-0[n]
(optimize) Optimizes the output code. An optional digit
limits the number of optimization passes; 9 specifies
maximum optimization. The default number of
optimization passes is 1.

-pg Produces a program that (at program execution time)
monitors the «calling of routines and writes a gmon.out
file. The Concentrix command gprof -A processes this
file.

-R library
(recompile instantiation) Forces an analysis of all
generic instantiations, causing reinstantiation of any
that are out of date.

COMPILATION SYSTEM OPTIONS
-S (suppress) Applies the pragma SUPPRESS to the entire
compilation.
-sh (show) Shows the pathname of the tool actually called.
-T (timing) Prints timing information for the compilation.

-u (update) Updates the 1library ada.lib even if syntax
errors are present.

-v (verbose) Prints the compiler version number, the date
and time of compilation, and summary information
concerning the compilation.

- (wvarnings) Suppresses warning diagnostics.

EXAMPLES

The following example compiles the source file hello.a
ada hello.a

The following example compiles the source file hello.a and

produces an executable program named a.out. The main program

is the program unit named hello.
ada -M hello.a

The following example compiles the source files termspec.a,

termbody.a, and hanoi.a, and produces an executable program

named a.out. The main program is the program unit named
hanoi.
ada -M hanoi termspec.a termbody.a hanoi.a

The following example compiles the source file hello.a and

produces an executable program named helle. The main program

is the program unit named hello.

ada -o hello -M hello.a

The following example writes error lines and diagnostics to
standard output.

ada -e -0 hello -M hello.a
The following example writes a listing with interspersed
diagnostics to standard output and the raw error messages
to hello.err.

ada -El -0 hello -M hello.a

B-4

COMPILATION SYSTEM OPTIONS

FILES

FILE.A - Ada source input file

/tmp/file.$S - code file created by front end

ada.lib - FX/Ads directory information file

gnrx.lib - FX/Ads generics library information file

GVAS table - GVAS table in the current FX/ADA project

ada.lock - lock link to ada.lib, for mutual exclusion

GVAS_table.LOCK - lock link to GVAS_table, for mutual
exclusion

SEE ALSO
a.das, a.error, a.ld, a.mklib, 1d(1)

DIAGNOSTICS
The diagnostics produced by the VADS compiler are intended
to be self-explanatory. Most refer to the RM. Each RM

reference includes a section number and optionally, a
paragraph number enclosed in parentheses.

B-5

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted othervise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -21474B3648 .. 2147483647;
type SHORT_INTEGER is range -32768 .. 32767;
type TINY INTEGER is range -128 .. 127;

type FLOAT is digits 15 range

-1.79769313486235E+308 .. +1.79769313486235E+308;
type SHORT FLOAT is digits 6

range -3.40283E+38 .. 3.40283E+38;

type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;

end STANDARD;

C-1

ATTACHMENT V

APPENDIX F. Implementation-Dependent Characteristics

FX/Ada release 2.3 Compiler

1. "Implementation-Dependent Pragmas"

INLINE ONLY Pragma

The INLINE_ONLY pragma, when used in the same way as
pragma INLINE, indicates to the compiler that the sub-
program must lways be inlined. This pragma also
suppresses the generation of a callable version of the
routine which saves code space.

BUILT_IN Pragma

The BUILT_IN pragma is used in the implementation of
some predefined Ada packages, but provides no user
access. It is used only to implement code bodies for
which no actual Ada body can be provided, for example
the MACHINE_CODE package.

RESOURCE Pragma

The RESOURCE pragma specifies the resource class of the
task (or tasks of a task type) or the resource class of
the main program. It is used to force a task to exe-
cute on a particular resource class when multiple pro-
cessors are used to execute an Ada program. This
pragma takes a static expression of the type
RESOURCE_TYPE declared in package SYSTEM. This pragma
is only allowed within the specification of a task unit
or immediately within the outermost declarative part of
a main program.

SHARE_CODE Pragma

The SHARE _CODE pragma takes the name of a generic
instantiation or a generic unit as the first argument
and one of the identifiers TRUE or FALSE as the second
argument. This pragma is only allowed immediately at
the place of a declarative item in a declarative part
or package specification, or after a library unit in a
compilation, but before any subsequent compilation
unit.

EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram
or variable defined in Ada and allows the user to
specify an external name that may be used to reference
the entity from other languages. The pragma is allowed
at the place of a declarative item in a package specif-~
ication and must apply to an object declared earlier in
the same package specification.

INTERFACE_NAME Pragma

The INTERFACE _NAME pragma takes the name of a a vari-
able defined in another language and allows it to be
referenced directly in Ada. The pragma will replace
all occurrences of the variable name with an external
reference to the second, link_argument. The pragma 1is
allowed at the place of a declarative item in a package
specification and must apply to an object declared ear-
lier in the same package specification. The object
must be declared as a scalar or an access type. The
object cannot be any of the following:

a loop variable,

a constant,

an initialized variable,

an array, or

a record.
The INTERFACE_NAME pragma is also used to provide an
external 1link name to a subprogram which has been
defined using the INTERFACE pragma.

IMPLICIT_CODE Pragma

Takes one of the identifiers ON or OFF as the single
argument. This pragma is only allowed within a machine
code procedure. It specifies that implicit code gen-
erated by the compiler be allowed or disallowed. A
warning is issued if OFF is used and any implicit code
needs to be generated. The default is ON.

LINK_WITH Pragma

The LINK_WITH pragma specifies a command to add to the
a.ld 1link line. This pragma takes one argument, a
string.

NON_REENTRANT

This pragma takes one argument which can be the name of
either a 1library subprogram or a subprogram declared
immediately within a library package spec or body. It
indicates to the compiler that the subprogram will not
be called recursively allowing the compiler to perform
specific optimizations. The pragma can be applied to a

subprogram or a set of overloaded subprogram within a
package spec or package body.

NOT_ELABORATED

This pragma can only appear in a library package
specification. It indicates that the package will not
be elaborated because it is either part of the RTS, a
configuration package or an Ada package that is refer-
enced from a language other than Ada. The presence of
this pragma suppresses the generation of elaboration
code and issues warnings if elaboration code is

required.

2. Implementation of Predefined Pragmas

CONTROLLED
This pragma is recognized by the implementation but has
no effect.

ELABORATE

This pragma is implemented as described in Appendix B
of the Ada RM.

INLINE
This pragma is implemented as described in Appendix B
of the Ada RM.

INTERFACE

This pragma supports calls to ‘C’, Pascal, and FORTRAN
functions. The Ada subprograms can be either functions
or procedures. The types of parameters and the result
type for functions must be scalar, access or the prede-
fined type ADDRESS in SYSTEM. All parameters must have
mode IN. Record and array objects can be passed by
reference using the ADDRESS attribute.

LIST

This pragma is implemented as described in Appendix B
of the Ada RM.

MEMORY_SIZE

This pragma is recognized by the implementation. The
implementation does not allow SYSTEM to be modified by
means of pragmas, the SYSTEM package must be recom-
piled.

OPTIMIZE

This pragma is recognized by the implementation but has
no effect.

PACK
This pragma will cause the compiler to choose a non-
aligned representation for composite types. It will not
causes objects to be packed at the bit level.

PAGE

This pragma is implemented as described in Appendix B
of the Ada RM.

PRIORITY

This pragma is implemented as described in Appendix B
of the Ada RM.

SHARED

. This pragma is recognized by the implementation but has
no effect.

STORAGE_UNIT
This pragma is recognized by the implementation. The
implementation does not allow SYSTEM to be modified by
means of pragmas, the SYSTEM package must be recom-
piled.

SUPPRESS

This pragma is implemented as described, except that
RANGE_CHECK and DIVISION_CHECK cannot be supressed.

SYSTEM_NAME
This pragma is recognized by the implementation. The
implementation does not allow SYSTEM to be modified by

means of pragmas, the SYSTEM package must be recom-
piled.

3. Implementation-Dependent Attributes

P/REFREF’u>(120u+ln) .br For a prefix that denotes an
object, a program unit, a label, or an entry.

This attribute denotes the effective address of the

first of the storage units allocated to P. For a sub-
program, package, task unit, or label, it refers to the
address of the machine code associated with the
corresponding body or statement. For an entry for
which an address clause has been given, it refers to
the corresponding hardware interrupt. The attribute is
of the type OPERAND defined in the package
MACHINE_CODE. The attribute is only allowed within a
machine code procedure.

See section F.4.8 for more information on the use of
this attribute.

(For a package, task unit, or entry, the ‘REF attribute
is not supported.)

Values of Predefined Attributes

Attributes of the pre-defined type DURATION
(a fixed-point type)

first is -2147483.648
last is 2147483.647

size 1is 32
delta is 1.00000000000000E-03
mantissa is 31

small is 1.00000000000000E-03
large is 2.14748364700000E+06

fore is 8

aft is 3

safe_small is 1.00000000000000E-03
safe_large is 2.14748364700000E+06
machine_rounds is TRUE
machine_overflows is TRUE

Attributes of type FLOAT
64

size .

first -1.79769313486235E+308

last 1.79769313486235E+308
digits 15

mantissa 51

epsilon 8.88178419700125E-16
emax 204

small 1.94469227433161E~-62

large 2.57110087081439E+61
safe_emax 1021

safe_small 2.22507385850720E~-308
safe_large 2.24711641857793E+307
machine_radix 2

machine_mantissa 53

machine_emax 1024
machine_emin -1021
machine_rounds TRUE
machine_overflows TRUE

Attributes of type SHORT FLOAT
32

size

first -3.40283E+38

last 3.40283E+38

digits 6

mantissa 21

epsilon 9.53674316406250E-07
emax 84

small 2.58493941422821E~26
large 1.93428038904621E+25
safe_emax 125

safe_small 1.17549435082229E-38
safe_large 4.25352755827078E+37
machine_radix 2
machine_mantissa 23
machine_emax 128
machine_emin -125
machine_rounds TRUE
machine_overflows TRUE

Ranges of predefined integer types

TINY_INTEGER

-128 .. 127

SHORT_INTEGER

-32768 .. 32767

INTEGER

-2147483648 .. 2147483647

Default STORAGE_SIZE (collection size) for an access type
100000
Priority range is 0 .. 99
Default Storage Size for Tasks is
20480
If tasks need larger stack sizes, the 'STORAGE_SIZE attribute
may be used with the task type declaration.

Attributes and time-related numbers

Duration’/’small 1.00000000000000E-03
System.tick 1.00000000000000E-02

Specification Of Package SYSTEM

package SYSTEM
is
type NAME is (fx_unix);

SYSTEM NAME: constant NAME := fx unix;

= 8;

STORAGE_UNIT: constant
1= 16_777_216;

MEMORY_SIZE: constant
-- System-Dependent Named Numbers

MIN_INT: constant := -2 147 483 648;
MAX INT: constant := 2_147_483_647;
MAX DIGITS: constant := 15;

MAX MANTISSA: constant := 31;
FINE_DELTA: constant := 2,0**(-31);
TICK: constant := 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 99;
MIN PRIORITY: constant priority := priority’first;
MAX PRIORITY: constant priority := priority’last:

type RESOURCE_TYPE is (any_resource,
detached ce_resource,
complex_resource,
ip_resource);

unavailable_resource exception;

. MAX REC_SIZE : integer := 64*1024;

type ADDRESS is private:;

NO_ADDR : constant ADDRESS;

function PHYSICAL ADDRESS (I: INTEGER) return ADDRESS;
function ADDR_GT(A, B: ADDRESS) return BOOLEAN;

function ADDR_LT(A, B: ADDRESS) return BOOLEAN:

function ADDR_GE (A, B: ADDRESS) return BOOLEAN;

function ADDR_LE(A, B: ADDRESS) return BOOLEAN;

function ADDR_DIFF (A, B: ADDRESS) return INTEGER:

function INCR_ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECR_ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS:
function ">" (A, B: ADDRESS) return BOOLEAN renames ADDR_GT:
function "<" (A, B: ADDRESS) return BOOLEAN renames ADDR_LT:
function ">=" (A, B: ADDRESS) return BOOLEAN renames ADDR_GE:
function "<=" (A, B: ADDRESS) return BOOLEAN renames ADDR_LE:
function "-" (A, B: ADDRESS) return INTEGER renames ADDR_DIFF:

function "+" (A: ADDRESS;

INCR: INTEGER) return ADDRESS renames INCR_ADDR;
function "-"(A: ADDRESS’

DECR: INTEGER) return ADDRESS renames DECR_ADDR;

pragma inline (ADDR_GT);

pragma inline (ADDR_LT);

pragma inline (ADDR_GE):

pragma inline (ADDR_LE);

pragma inline (ADDR_DIFF)

pragma inline (INCR_ADDR);
pragma inline (DECR_ADDR):;
pragma inline (PHYSICAL_ADDRESS):

private
type ADDRESS is new integer:
NO_ADDR : constant ADDRESS := 0

end SYSTEM:;

6. Restrictions On Representation Clauses

Pragma PACK

In the absence of pragma PACK record components are
padded so as to provide for efficient access by the
target hardware. Pragma PACK applied to a record elim-
inates the padding where possible. Pragma PACK has no
other effect on the storage allocated for record com-
ponents, so a record representation is required to make
record components smaller. Bit packing is not sup-
ported for components larger than STORAGE_UNIT. Com-
ponents smaller than STORAGE_UNIT will be bit packed
within a storage unit. Objects and larger components
are packed to the nearest whole STORAGE_UNIT.

Length Clauses

For scalar types, a length clause which is a size
specification will compress storage to the number of
bits required to represent the range of the subtype.
For fixed, short_float, and access types, this is 32.
For float, this is 64.

A size specification applied to a composite <type with
components of composite types will not cause compres-
sion of component storage. To allocate the minimal
number of bits for records of composite types, an
explicit record representation clause must be given

- 10 -

with length clauses for each component. An error will
be issued if there 1is insufficient space allocated.
Component clauses need not be aligned on STORAGE_UNIT
boundaries. A component of a record representation
clause may not specify fewer bits for a component type
than would be used for values of the type.

Size specifications (T’'SIZE) are not supported for task
types. Specifications of storage for a task activation
(T STORAGE_SIZE) is supported. The minimum storage
size for task activations is 5120, but can be larger
depending on the size of data objects declared in the

task.

The size specification T’SMALL is not supported except
when the representation specification is the same as
the value ’'SMALL for the base type.

Specification of collection size is supported.

Address Clauses

Address clauses are supported for wuninitialized vari-
ables and constants. They are not supported by the
compiler for subprograms, packages, and task units.

Interrupts

Interrupt entries are supported for UNIX
clause gives the UNIX signal number. The fol-

lowing is the meaning associated with the

Ada for
signals:
1 SIGHUP
2 SIGINT
3 SIGQUIT
4 SIGILL
5 SIGTRAP
6 SIGIOT
7 SIGEMT
8 SIGFPE
9 SIGKILL
10 SIGBUS
11 SIGSEGV
12 SIGSYS
13 SIGPIPE
14 SIGALRM
1S SIGTERM
16 SIGURG
17 SIGSTOP
18 SIGTSTP
19 SIGCONT
20 SIGCHLD
21 SIGTTIN
22 SIGTTOU
23 SIGIO
24 SIGXCPU
25 SIGXFSZ
26 SIGVTALRM
27 SIGPROF

SIGWINCH

signals. The
valid ONIX

hangup
interrupt

quit

illegal instruction (not reset when caught)
trace trap (not reset when caught)

IOT instruction

EMT instruction

floating point exception

kill (cannot be caught or ignored)

bus error

segmentation violation

bad argqument to system call

write on a pipe with no one to read it
alarm clock

software termination signal from kill
urgent condition on IO channel

sendable stop signal not from tty

stop signal from tty

continue a stopped process

to parenct on child stop or exit

to readers pgrp upon background tty read
like TTIN for output if (tp->t_locals<OSTOP)
input/outputr possible signal

aexceeded C2U time limit

exceeded file size limit

virtual time alarm

profiling time alarm

window changed

Representation Attributes

The ADDRESS attribute is not supported for packages and
task entries. The compiler issues a warning message
and the value which is type SYSTEM.ADDRESS is

SYSTEM.NO_ADDR.

Machine Code Insertions
Machine code insertions are supported.

The general definition of the package MACHINE_CODE pro-
vides an assembly language interface for the target
machine. It provides the necessary record type(s)
needed in the code statement, an enumeration type of
all the opcode mneumonics, a set of register defini-
tions, and a set of addressing mode functions.

The general syntax of a machine code statement is as
follows:

CODE_n’ (opcode, operand f{, operand}):

where n indicates the number of operands in the aggre-
gate.

A special case arises for a variable number of
operands. The operands are listed within a subaggre-
gate. The format is as follows:

CODE_N’ (opcode, (operand {, operand})):

For those opcodes that require no operands, named nota-
tion must be used (cf. RM 4.3(4)).

CODE_0’ (op => opcode);

The opcode must be an enumeration literal (i.e. it can-
not be an object, attribute, or a rename).

An operand can only be an entity defined in
MACHINE_CODE or the ’'REF attribute.

The arguments to any of the functions defined in
MACHINE_CODE must be static expressions, string
literals, or the functions defined in MACHINE_CODE.

The '‘REF attribute may not be used as an argument in
any of these functions.

10.

11.

12.

Inline expansion of machine code procedures is sup-
ported.

Conventions for Implementation-generated Names
There are no implementation-generated names.

Interpretation of Expressions in Address Clauses

Address clauses are supported for constants and vari-
ables. Address clauses for interrupts are interpreted
as described above.

Restrictions on Unchecked Conversions

None.

Restrictions on Unchecked Deallocations

None.

Implementation Characteristics of I/0 Packages

The input output packages are implemented as specified
in Chapter 14 of the LRM. IO characteristics are dic-
tated by the underlying Unix IO subsystem which is
bit-stream oriented for disc IO and block oriented for
tape IO. Other devices have additional characteris-

tics.

Ada Sequential IO and Direct_IO is implemented such
that reads and writes call the Unix system calls
read(2) and write(2). If you instantiate Sequential_ IO
or Direct_IO with a constrained type, there is a one-
to-one correspondence between Ada read/writes to UNIX
read/writes. Otherwise, there are 2 Unix reads/writes
to one Ada read/write, one for the size and one for the

data.

Implementation Limits

The following limits are actually enforced by the
implementation. It is not intended to imply that
resources up to or even near these limits are available

to every program,

Line Length

The implementation supports a maximum 1line length of
500 characters including the end of line character.

Record and Array Sizes

The maximum size of a statically sized array or record
type is 4,000,000 x STORAGE_UNITS. A record type or
array type declaratzon that exceeds these 1limits will

generate a warm.ng message.

Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length
specification every task except the main program is
allocated a fixed size stack of 10,240 STORAGE_UNITS.
This is the value returned by T’ STORAGE_SIZE for a task
type T. The minimum stack size for tasks is 5120.

Default Collection Size

In the absence of an explicit STORAGE_SIZE length
attribute the default collection size for an access
type is 100 times the size of the designated type.
This is the value returned by T’STORAGE_SIZE for an

access type T.

Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS
for objects declared statically within a compilation
unit. If this value is exceeded the compiler will ter-
minate the compilation of the unit with a FATAL error

message.

